
RL AUTOPILOT

Project Team
Rizwan | Oneeb | Krishnateja

Martin | Rengapriya

USING X-PLANE 11

Tuesday 30 November, 2021

🏁

Project Timeline

Week 10

- PPO Training
- DDPG Implementation
- Reward fine-tuning

Week 15

- Final Presentation
- Finish Project

Documentation
○ EDD
○ Technical Paper

Week 11

- DDPG Tuning & Training
- PPO Training & Testing
- Research other agents to

explore
- Finish Project website

Week 12

- DDPG Training Continued
- Implementation of new

agent
- Improve visualization

Week 14

- Conclude any code-facing
work

- Prepare Final
Presentation

- Finalize demos

Week 13

- Training of new agent
- Comparative Analysis
- Identify critical weak

points

Environment
1. X Plane Simulation

2. RL Environment

3. Reward Function

Simulation Setup

Python Script X-Plane Connect X-Plane 11

Lua Script

Send UDP Packets

Rcv UDP Packets

Send Action

Get Observation

Constantly read Done Flag

Reload Situation File if Done

● X-Plane 11’s API allows data access through UDP sockets.
● NASA XplaneConnect plugin was used to facilitate communication
● Added “situation reset” functionality using a Lua script

Agent API Env

Environment
1. X Plane Simulation

2. RL Environment

3. Reward Function

RL Environment

● The aircraft is spawned at an initial altitude and the goal is to descend to a given target altitude
irrespective of the final attitude.

● We chose the 8 most relevant observation space parameters and these include:
1. Indicated Airspeed
2. Vertical Velocity
3. Altitude
4. Pitch
5. Roll
6. True Heading
7. Angle of Attack
8. Sideslip Angle

● The action space was limited to 4 actions which include:
1. Latitudinal Stick (to control the elevator / pitching motion)
2. Longitudinal Stick (to control the ailerons / rolling motion)
3. Rudder Pedals (to control rudder / yawing motion)
4. Throttle

Environment
1. X Plane Simulation

2. RL Environment

3. Reward Function

Reward Function
+6000 for every step in successful range

–(|current_altitude – target_altitude|) for each step

–100,000 for crashing

3200 m

2800 m

2700 m

2600 m

2750 m

2700 m

REWARD: –500

REWARD: +5950

REWARD: +6000

3000 m REWARD: –300

RL Agents

RL Agents

1. REINFORCE

2. Proximal Policy Optimization (PPO)
○ Continuous

○ Categorical

3. Deep Deterministic Policy Gradient
○ Original

○ Quick Ending
■ Target Start

4. Soft Actor-Critic

REINFORCE

● Simplistic method, which allowed us to familiarize ourselves with the world of

Policy Gradients.

● REINFORCE is extremely computationally inefficient. We were almost

guaranteed no results.

● At the Midterm we had decided not to continue training our model.
Method

The NN takes observation space as input and output (𝛍, 𝝈) for the normal probability distribution for
each continuous space action from which actions will be sampled (while training)

RL Agents

1. REINFORCE

2. Proximal Policy Optimization (PPO)
○ Continuous

○ Categorical

3. Deep Deterministic Policy Gradient
○ Original

○ Quick Ending
■ Target Start

4. Soft Actor-Critic

Proximal Policy Optimization (PPO)

● Actor-Critic method based algorithm to solve
problems dealing with continuous action spaces.

● 2 networks are trained in parallel.
● Actor network outputs the normal distribution

parameters for sampling actions. Critic network
approximates the value function for the current
state.

● Rewards and value function are used to compute
the advantage used in calculations for loss and
backpropagation

PPO Continuous

● We used the same network from REINFORCE as our actor network and for
value network as well.

● The output layer has 8 units for predicting Mu and Sigma for 4 actions.

Architecture: 8 x 256 x 256 x 256 x 8
Activation: ReLU
Output Activation: Tanh for Mu

 : Sigmoid for Sigma
LR: 3 x 10^-3

PPO Continuous

Episode 10 Episode 490

Final Altitude

● During the first training session of 500 episodes, the results were not
satisfactory.

● The average scores
plateaued.

● The reason which we
realised was that the buffer
size that we were using was
very small.

RL Agents

1. REINFORCE

2. Proximal Policy Optimization (PPO)
○ Continuous

○ Categorical

3. Deep Deterministic Policy Gradient
○ Original

○ Quick Ending
■ Target Start

4. Soft Actor-Critic

PPO Categorical

● To make the underlying model simpler, the action space was discretized into 11
equal graduations.

● The redefined action spaces:
○ Latitudinal Stick, Longitudinal Stick, Rudder Pedals: [-0.5, 0.5]
○ Throttle: [0.5, 1.0]

● 4 separate agents for 4 actions.
● Replay memory buffer was increased to store 100000 steps

● Mini batches of size 5000 were used.

PPO Categorical

● Same networks were used for Actor and Critic except for the output layer.

● Actor outputs a pdf over 11 discretized action values.

● Critic outputs a single value function for the state

Architecture: 8 x 256 x 256 x 256 x 11
Activation: ReLU
Output Activation: Softmax
LR: 3 x 10^-3

PPO Categorical

Continuous Action Space Discrete Action Space

● Discretizing the action space showed a marked improvement from the PPO with
continuous action space.

● Number of successful steps after 500 episodes.

S

uc
ce

ss
fu

l S
te

ps

S

uc
ce

ss
fu

l S
te

ps

Episode # Episode #

PPO Categorical

● During the start there were some crashes but then it learnt pretty quickly.
● During some of the episodes the aircraft stayed inside the target zone for

longer than half of the time.

Episodes 0 - 280 Episodes 281 - 1030 Episodes 1031- 1640

Episode # Episode # Episode #

 S

uc
ce

ss
fu

l S
te

ps

 S

uc
ce

ss
fu

l S
te

ps

 S

uc
ce

ss
fu

l S
te

ps

RL Agents

1. REINFORCE

2. Proximal Policy Optimization (PPO)
○ Continuous

○ Categorical

3. Deep Deterministic Policy Gradient
○ Original

○ Quick Ending
■ Target Start

4. Soft Actor-Critic

DDPG

Actor Network Critic Network Target Actor Network Target Critic Network

Setup

Actor Network

Obs

Act

Critic Network

Obs

Q Val

Actor Network

Obs

Act

Actor Network

Obsnext

Actnext

Critic Network

Obsnext

Q Valnext

Actor Network

Obsnext

Actnext

DDPG

Architecture: 8 x 400 x 300 x 4 Architecture: 8 x 400 x 300 x 4 Architecture: 8 x 400 x 300 x 4
Tau: 0.001

Architecture: 8 x 400 x 300 x 4
Tau: 0.001

Setup
Actor Network Critic Network Target Actor Network Target Critic Network

DDPG
Hyper-parameters

Learn: Every 20 Steps
Learning Rates: 2.5 x 10-5 (Actor, Target Actor), 2.5 x 10-4 (Critic, Target Critic)

Max Replay Buffer Size: 1 x 106 Steps
Batch Size: 5000

Target Network Soft Update: 0.001

Exploration: Ornstein-Uhlenbeck Noise

Noise added to each
action space item

(tends to 𝜇, as t → ∞)
𝜇 = 0

DDPG
Performance and Evaluation: Flight Trajectory

Episode 0-500 Episode 500-1000 Episode 1500-2000

DDPG

Episode 4000 onwards, the agent did not show signs of progress.

Episode 3171-3180 Episode 4181-4190

RL Agents

1. REINFORCE

2. Proximal Policy Optimization (PPO)
○ Continuous

○ Categorical

3. Deep Deterministic Policy Gradient
○ Original

○ Quick Ending
■ Target Start

4. Soft Actor-Critic

DDPG

Convinced that the structure of our reward OR episode was the problem

Δ Episode ends whenever plane leaves the target zone after entering it once.

Rationale

● Shorter unsuccessful episodes

● Agent should learn to stay in the target zone longer

DDPG
Performance and Evaluation: Number of Successful Steps & Average Score

DDPG
Performance and Evaluation: Flight Trajectory

Episode 1-10 Episode 751-760 Episode 3991-4000

RL Agents

1. REINFORCE

2. Proximal Policy Optimization (PPO)
○ Continuous

○ Categorical

3. Deep Deterministic Policy Gradient
○ Original

○ Quick Ending
■ Target Start

4. Soft Actor-Critic

DDPG

Δ Episode starts with plane in target zone

Δ Hyper parameter tuning

● Policy Gradient methods (especially DDPG) are very sensitive

● Learning Rates: 2.5 x 10-7 (Actor, Target Actor), 2.5 x 10-6 (Critic, Target
Critic)

● Scaled reward

DDPG
Performance and Evaluation: Network Loss

DDPG
Performance and Evaluation: Flight Trajectory

Episode 1-10 Episode 281-290 Episode 991-1000

DDPG
Verdict

DDPG has proven to be extremely sensitive.

Different episode designs and reward schemes, require a very particular

combination of hyperparameters.

“It is often reported that DDPG suffers from instability in the form of sensitivity to hyper-parameters and propensity to converge to
very poor solutions or even diverge.” [1]

RL Agents

1. REINFORCE

2. Proximal Policy Optimization (PPO)
○ Continuous

○ Categorical

3. Deep Deterministic Policy Gradient
○ Original

○ Quick Ending
■ Target Start

4. Soft Actor-Critic

● On-policy algorithms are expensive in terms of sample complexity
● Some off-policy methods like DDPG can be extremely sensitive to

hyperparameters despite being sample efficient.
● Soft Actor-Critic (SAC) is an off-policy

actor-critic deep RL algorithm based
on the maximum entropy RL
framework

● The actor aims to maximize expected
reward while also maximizing entropy,
i.e., to succeed at the task while acting
as randomly as possible.

Soft Actor-Critic

● To cater for less time available for training, the observation space was
simplified, to see if the algorithm would respond (learn) quickly.

● Since the primary goal was to train the model to change altitude without any
constraints on attitude, therefore, the observation space was simplified to only
3 parameters:
○ Indicated Airspeed
○ Vertical Velocity
○ Relative altitude

● Two iterations of the algorithm were run with different hyperparameters and
they showed good results.

Soft Actor-Critic

Soft Actor-Critic

● Same networks were used for Actor, Critic and Value networks except for the output layer.

● Actor outputs mean and std for 4 actions.

● Critic outputs a single value function for the state with state action pair as input.

● Value network estimates value function, given state.

Architecture: 3 x 256 x 256 x 256 x 8
Activation: ReLU
Output Activation: Linear
LR: 3 x 10^-3
Reward Scale: 1.0

● Initial SAC agent was very conservative and did not explore a lot despite being
formulated on maximum entropy framework.

● Over the course of training for close to 700 episodes, the trend in flight
trajectory changed only slightly.

Soft Actor-Critic

● Despite experiencing some episodes with very large positive rewards,
performance plateaued.

Soft Actor-Critic

● To look into the issues affecting the performance of our agent we went back to
the paper

● Soft Actor-Critic paper discusses the effects of some of the most important
hyperparameters [2]:
○ Reward Scale
○ Target value update smoothing constant

● Reward scale gives more weightage to rewards, that the agent collects, while
calculating the loss of the critic network.

● With the right reward scaling, the model balances exploration and exploitation,
leading to faster learning.

Soft Actor-Critic

● SAC paper shows sensitivity to reward scaling with this plot for Ant-v1
environment

Soft Actor-Critic

● We observed something similar about our agents training as well
● The first experiment was ran with a reward scale of 1.0 and the second one

with 10.0 and with 5 gradient descent after each step of the agent

● With reward scale of 10, the agent did keep trying to stay closer to high reward
zone.

Soft Actor-Critic

● Elevator and Throttle controls make more intuitive sense during straight & level
flight.
○ Pitch-up / throttle increase = Aircraft moves up
○ pitch-down / throttle decrease = Aircraft moves down

● During the turn the force vectors act in complicated ways making it difficult for
the agent to reorient the aircraft.

Soft Actor-Critic

● Complemented the actions predicted by the agent with hard-coded rules for
aileron.

● The hard-coded rules try to keep the aircraft bank angle within +/- 10 degrees
● Agent’s performance improved significantly

Limitations

1. Environment issues slowed down the progress significantly
2. Sampling trajectories from the environment was very expensive, therefore,

on-policy algorithms like PPO became infeasible
3. Reward function was not intuitively designed
4. Not adequate focus on hyper-parameter tuning

Future Work

Our roadmap moving forward will be:
1. Build a fully compatible OpenAI Gym environment
2. Try to run X-Plane 11 on cloud
3. Standardize a set of metrics to gauge performance
4. Improve reward shaping w.r.t the environmental context
5. Explore Curriculum Learning - moving from easier tasks to more difficult ones
6. Imitation learning paired with off-policy methods

Website Link:

https://priya007007.github.io/Website527/

https://priya007007.github.io/Website527/

Individual Contributions

Muhammad Rizwan Malik
● REINFORCE, PPO, SAC
● Weekly Presentation
● Project Documentation

Muhammad Oneeb Ul Haq Khan

● REINFORCE, DDPG
● Weekly Presentation
● Project Documentation

Martin Huang

● DDPG
● Weekly Presentation

Krishnateja Gunda
● REINFORCE
● Project Documentation

Rengapriya Aravindan

● Project Website
● Project Documentation

References

1. Matheron, Guillaume, Nicolas Perrin, and Olivier Sigaud. "The problem with DDPG: understanding
failures in deterministic environments with sparse rewards." arXiv preprint arXiv:1911.11679 (2019).

2. Haarnoja, Tuomas, et al. "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor." International conference on machine learning. PMLR, 2018.

3. Schulman, John, et al. "Proximal policy optimization algorithms." arXiv preprint arXiv:1707.06347
(2017).

4. Sutton, Richard S., et al. "Policy gradient methods for reinforcement learning with function
approximation." Advances in neural information processing systems. 2000.

Thank you!

