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Project Timeline

Week 10

- PPO Training
- DDPG Implementation
- Reward fine-tuning

Week 15

- Final Presentation
- Finish Project 

Documentation 
○ EDD
○ Technical Paper

Week 11

- DDPG Tuning & Training
- PPO Training & Testing
- Research other agents to 

explore
- Finish Project website

Week 12

- DDPG Training Continued
- Implementation of new 

agent 
- Improve visualization

Week 14

- Conclude any code-facing 
work

- Prepare Final 
Presentation

- Finalize demos

Week 13

- Training of new agent
- Comparative Analysis
- Identify critical weak 

points



Environment
1. X Plane Simulation

2. RL Environment

3. Reward Function



Simulation Setup

Python Script X-Plane Connect X-Plane 11

Lua Script

Send UDP Packets

Rcv UDP Packets

Send Action

Get Observation

Constantly read Done Flag

Reload Situation File if Done

● X-Plane 11’s API allows data access through UDP sockets.
● NASA XplaneConnect plugin was used to facilitate communication
● Added “situation reset” functionality using a Lua script

Agent API Env
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RL Environment

● The aircraft is spawned at an initial altitude and the goal is to descend to a given target altitude 
irrespective of the final attitude.

● We chose the 8 most relevant observation space parameters and these include:
1. Indicated Airspeed
2. Vertical Velocity
3. Altitude
4. Pitch
5. Roll
6. True Heading
7. Angle of Attack
8. Sideslip Angle

● The action space was limited to 4 actions which include:
1. Latitudinal Stick (to control the elevator / pitching motion)
2. Longitudinal Stick (to control the ailerons / rolling motion)
3. Rudder Pedals (to control rudder / yawing motion)
4. Throttle
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1. X Plane Simulation
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Reward Function
+6000 for every step in successful range

–(|current_altitude – target_altitude|) for each step

–100,000 for crashing

3200 m

2800 m

2700 m

2600 m

2750 m

2700 m

REWARD: –500

REWARD: +5950

REWARD: +6000

3000 m REWARD: –300



RL Agents



RL Agents

1. REINFORCE

2. Proximal Policy Optimization (PPO)
○ Continuous

○ Categorical

3. Deep Deterministic Policy Gradient
○ Original

○ Quick Ending
■ Target Start

4. Soft Actor-Critic



REINFORCE

● Simplistic method, which allowed us to familiarize ourselves with the world of 

Policy Gradients.

● REINFORCE is extremely computationally inefficient. We were almost 

guaranteed no results. 

● At the Midterm we had decided not to continue training our model.
Method

The NN takes observation space as input and output (𝛍, 𝝈) for the normal probability distribution for 
each continuous space action from which actions will be sampled (while training)
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Proximal Policy Optimization (PPO)

● Actor-Critic method based algorithm to solve 
problems dealing with continuous action spaces.

● 2 networks are trained in parallel. 
● Actor network outputs the normal distribution 

parameters for sampling actions. Critic network 
approximates the value function for the current 
state.

● Rewards and value function are used to compute 
the advantage used in calculations for loss and 
backpropagation



PPO Continuous

● We used the same network from REINFORCE as our actor network and for 
value network as well.

● The output layer has 8 units for predicting Mu and Sigma for 4 actions.

Architecture: 8 x 256 x 256 x 256  x 8
Activation: ReLU
Output Activation: Tanh for Mu

    : Sigmoid for Sigma
LR: 3 x 10^-3



PPO Continuous

Episode 10 Episode 490

Final Altitude

● During the first training session of 500 episodes, the results were not 
satisfactory.

● The average scores 
plateaued.

● The reason which we 
realised was that the buffer 
size that we were using was 
very small.
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PPO Categorical

● To make the underlying model simpler, the action space was discretized into 11 
equal graduations.

● The redefined action spaces:
○ Latitudinal Stick, Longitudinal Stick, Rudder Pedals: [-0.5, 0.5]
○ Throttle: [0.5, 1.0]

● 4 separate agents for 4 actions.
● Replay memory buffer was increased to store 100000 steps 

● Mini batches of size 5000 were used.



PPO Categorical

● Same networks were used for Actor and Critic except for the output layer.

● Actor outputs a pdf over 11 discretized action values.

● Critic outputs a single value function for the state

Architecture: 8 x 256 x 256 x 256  x 11
Activation: ReLU
Output Activation: Softmax
LR: 3 x 10^-3



PPO Categorical

Continuous Action Space Discrete Action Space

● Discretizing the action space showed a marked improvement from the PPO with 
continuous action space.

● Number of successful steps after 500 episodes.
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PPO Categorical

● During the start there were some crashes but then it learnt pretty quickly.
● During some of the episodes the aircraft stayed inside the target zone for 

longer than half of the time.

Episodes 0 - 280 Episodes 281 - 1030 Episodes 1031- 1640

Episode # Episode # Episode #
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DDPG

Actor Network Critic Network Target Actor Network Target Critic Network

Setup

Actor Network

Obs

Act

Critic Network

Obs

Q Val

Actor Network

Obs

Act

Actor Network

Obsnext

Actnext

Critic Network

Obsnext

Q Valnext

Actor Network

Obsnext

Actnext



DDPG

Architecture: 8 x 400 x 300 x 4 Architecture: 8 x 400 x 300 x 4 Architecture: 8 x 400 x 300 x 4
Tau: 0.001

Architecture: 8 x 400 x 300 x 4
Tau: 0.001

Setup
Actor Network Critic Network Target Actor Network Target Critic Network



DDPG
Hyper-parameters

Learn: Every 20 Steps
Learning Rates: 2.5 x 10-5 (Actor, Target Actor), 2.5 x 10-4 (Critic, Target Critic)

Max Replay Buffer Size: 1 x 106 Steps
Batch Size: 5000

Target Network Soft Update: 0.001

Exploration: Ornstein-Uhlenbeck Noise

Noise added to each 
action space item

(tends to 𝜇, as t → ∞)
𝜇 = 0



DDPG
Performance and Evaluation: Flight Trajectory

Episode 0-500 Episode 500-1000 Episode 1500-2000



DDPG

Episode 4000 onwards, the agent did not show signs of progress.

Episode 3171-3180 Episode 4181-4190 
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DDPG

Convinced that the structure of our reward OR episode was the problem

Δ Episode ends whenever plane leaves the target zone after entering it once.

Rationale

● Shorter unsuccessful episodes

● Agent should learn to stay in the target zone longer



DDPG
Performance and Evaluation: Number of Successful Steps & Average Score



DDPG
Performance and Evaluation: Flight Trajectory

Episode 1-10 Episode 751-760 Episode 3991-4000
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DDPG

Δ Episode starts with plane in target zone

Δ Hyper parameter tuning

● Policy Gradient methods (especially DDPG) are very sensitive

● Learning Rates: 2.5 x 10-7 (Actor, Target Actor), 2.5 x 10-6 (Critic, Target 
Critic)

● Scaled reward



DDPG
Performance and Evaluation: Network Loss



DDPG
Performance and Evaluation: Flight Trajectory

Episode 1-10 Episode 281-290 Episode 991-1000



DDPG
Verdict 

DDPG has proven to be extremely sensitive. 

Different episode designs and reward schemes, require a very particular 

combination of hyperparameters. 

“It is often reported that DDPG suffers from instability in the form of sensitivity to hyper-parameters and propensity to converge to 
very poor solutions or even diverge.” [1]
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● On-policy algorithms are expensive in terms of sample complexity
● Some off-policy methods like DDPG can be extremely sensitive to 

hyperparameters despite being sample efficient.
● Soft Actor-Critic (SAC) is an off-policy 

actor-critic deep RL algorithm based 
on the maximum entropy RL 
framework

● The actor aims to maximize expected 
reward while also maximizing entropy, 
i.e., to succeed at the task while acting 
as randomly as possible.

Soft Actor-Critic



● To cater for less time available for training, the observation space was 
simplified, to see if the algorithm would respond (learn) quickly.

● Since the primary goal was to train the model to change altitude without any 
constraints on attitude, therefore, the observation space was simplified to only 
3 parameters:
○ Indicated Airspeed
○ Vertical Velocity
○ Relative altitude

● Two iterations of the algorithm were run with different hyperparameters and 
they showed good results.

Soft Actor-Critic



Soft Actor-Critic

● Same networks were used for Actor, Critic and Value networks except for the output layer.

● Actor outputs mean and std for 4 actions.

● Critic outputs a single value function for the state with state action pair as input.

● Value network estimates value function, given state.

Architecture: 3 x 256 x 256 x 256  x 8
Activation: ReLU
Output Activation: Linear
LR: 3 x 10^-3
Reward Scale: 1.0



● Initial SAC agent was very conservative and did not explore a lot despite being 
formulated on maximum entropy framework.

● Over the course of training for close to 700 episodes, the trend in flight 
trajectory changed only slightly.

Soft Actor-Critic



● Despite experiencing some episodes with very large positive rewards, 
performance plateaued. 

Soft Actor-Critic



● To look into the issues affecting the performance of our agent we went back to 
the paper

● Soft Actor-Critic paper discusses the effects of some of the most important 
hyperparameters [2]:
○ Reward Scale
○ Target value update smoothing constant

● Reward scale gives more weightage to rewards, that the agent collects, while 
calculating the loss of the critic network.

● With the right reward scaling, the model balances exploration and exploitation, 
leading to faster learning.

Soft Actor-Critic



● SAC paper shows sensitivity to reward scaling with this plot for Ant-v1 
environment

Soft Actor-Critic

● We observed something similar about our agents training as well
● The first experiment was ran with a reward scale of 1.0 and the second one 

with 10.0 and with 5 gradient descent after each step of the agent



● With reward scale of 10, the agent did keep trying to stay closer to high reward 
zone.

Soft Actor-Critic



● Elevator and Throttle controls make more intuitive sense during straight & level 
flight. 
○ Pitch-up / throttle increase = Aircraft moves up
○ pitch-down / throttle decrease = Aircraft moves down

● During the turn the force vectors act in complicated ways making it difficult for 
the agent to reorient the aircraft.

Soft Actor-Critic

● Complemented the actions predicted by the agent with hard-coded rules for 
aileron.

● The hard-coded rules try to keep the aircraft bank angle within +/- 10 degrees
● Agent’s performance improved significantly



Limitations

1. Environment issues slowed down the progress significantly
2. Sampling trajectories from the environment was very expensive, therefore, 

on-policy algorithms like PPO became infeasible
3. Reward function was not intuitively designed
4. Not adequate focus on hyper-parameter tuning 



Future Work

Our roadmap moving forward will be:
1. Build a fully compatible OpenAI Gym environment 
2. Try to run X-Plane 11 on cloud
3. Standardize a set of metrics to gauge performance 
4. Improve reward shaping w.r.t the environmental context
5. Explore Curriculum Learning - moving from easier tasks to more difficult ones
6. Imitation learning paired with off-policy methods



Website Link: 

https://priya007007.github.io/Website527/ 

https://priya007007.github.io/Website527/


Individual Contributions

Muhammad Rizwan Malik 
● REINFORCE, PPO, SAC
● Weekly Presentation
● Project Documentation

Muhammad Oneeb Ul Haq Khan

● REINFORCE, DDPG
● Weekly Presentation
● Project Documentation

Martin Huang

● DDPG
● Weekly Presentation

Krishnateja Gunda
● REINFORCE
● Project Documentation

Rengapriya Aravindan

● Project Website
● Project Documentation
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